@Quehoniaomath,
Starting with
1/(x+4) + 1/(x+3)=1/(x+2) + 1/(x+5)
and doing your manipulation
(x+4)(x+5)(x+2) / (x+4)(x+5)(x+2)(x+3) + (x+3)(x+5)(x+2) / (x+4)(x+5)(x+2)(x+3) = (x+3)(x+4)(x+2)/ (x+4)(x+5)(x+2)(x+3) + (x+4)(x+3)(x+5) / (x+4)(x+5)(x+2)(x+3)
Let A=(x+4)(x+5)(x+2)(x+3)
Then
(x+4)(x+5)(x+2) / A + (x+3)(x+5)(x+2) / A = (x+3)(x+4)(x+2)/ A + (x+4)(x+3)(x+5) / A
and A<>0 Then (e.g. x cannot be -2,-3,-4,-5
(x+4)(x+5)(x+2) + (x+3)(x+5)(x+2) = (x+3)(x+4)(x+2)+ (x+4)(x+3)(x+5)
Using distribution
((x+4)+(x+3))(x+5)(x+2) = ((x+2)+(x+5)) (x+4)(x+3)
(2x+7)(x+5)(x+2) = (2x+7) (x+4)(x+3)
Which is the same as I had before
So the only way for this to be true is for 2x+7=0 as 10<>12
if so then x=-7/2=-3.5
Your right your solution method is quite messy.
Rap