Smoking is often postulated as an example of cognitive dissonance because it is widely accepted that cigarettes can cause lung cancer, yet virtually everyone wants to live a long and healthy life. In terms of the theory, the desire to live a long life is dissonant with the activity of doing something that will most likely shorten one's life. The tension produced by these contradictory ideas can be reduced by quitting smoking, denying the evidence of lung cancer, or justifying one's smoking.[4] For example, smokers could rationalize their behavior by concluding that only a few smokers become ill, that it only happens to very heavy smokers, or that if smoking does not kill them, something else will.[5] While chemical addiction may operate in addition to cognitive dissonance for existing smokers, new smokers may exhibit a simpler case of the latter.
This case of dissonance could also be interpreted in terms of a threat to the self-concept.[6] The thought, "I am increasing my risk of lung cancer" is dissonant with the self-related belief, "I am a smart, reasonable person who makes good decisions." Because it is often easier to make excuses than it is to change behavior, dissonance theory leads to the conclusion that humans are sometimes rationalizing and not always rational beings.
So based on that, I'm fairly confident that any logic or argument presented (especially on the side of science), would be mainly based on someone elses experimentations, research, and observations.
Any argument is based, originally, on a belief
The evidence, as he presented it, mostly fell within four categories: biogeography, paleontology, embryology, and morphology. Biogeography is the study of the geographical distribution of living creatures"that is, which species inhabit which parts of the planet and why. Paleontology investigates extinct life-forms, as revealed in the fossil record. Embryology examines the revealing stages of development (echoing earlier stages of evolutionary history) that embryos pass through before birth or hatching; at a stretch, embryology also concerns the immature forms of animals that metamorphose, such as the larvae of insects. Morphology is the science of anatomical shape and design. Darwin devoted sizable sections of The Origin of Species to these categories.
Biogeography, for instance, offered a great pageant of peculiar facts and patterns. Anyone who considers the biogeographical data, Darwin wrote, must be struck by the mysterious clustering pattern among what he called "closely allied" species"that is, similar creatures sharing roughly the same body plan. Such closely allied species tend to be found on the same continent (several species of zebras in Africa) or within the same group of oceanic islands (dozens of species of honeycreepers in Hawaii, 13 species of Galápagos finch), despite their species-by-species preferences for different habitats, food sources, or conditions of climate. Adjacent areas of South America, Darwin noted, are occupied by two similar species of large, flightless birds (the rheas, Rhea americana and Pterocnemia pennata), not by ostriches as in Africa or emus as in Australia. South America also has agoutis and viscachas (small rodents) in terrestrial habitats, plus coypus and capybaras in the wetlands, not"as Darwin wrote"hares and rabbits in terrestrial habitats or beavers and muskrats in the wetlands. During his own youthful visit to the Galápagos, aboard the survey ship Beagle, Darwin himself had discovered three very similar forms of mockingbird, each on a different island.
Why should "closely allied" species inhabit neighboring patches of habitat? And why should similar habitat on different continents be occupied by species that aren't so closely allied? "We see in these facts some deep organic bond, prevailing throughout space and time," Darwin wrote. "This bond, on my theory, is simply inheritance." Similar species occur nearby in space because they have descended from common ancestors.
Paleontology reveals a similar clustering pattern in the dimension of time. The vertical column of geologic strata, laid down by sedimentary processes over the eons, lightly peppered with fossils, represents a tangible record showing which species lived when. Less ancient layers of rock lie atop more ancient ones (except where geologic forces have tipped or shuffled them), and likewise with the animal and plant fossils that the strata contain. What Darwin noticed about this record is that closely allied species tend to be found adjacent to one another in successive strata. One species endures for millions of years and then makes its last appearance in, say, the middle Eocene epoch; just above, a similar but not identical species replaces it. In North America, for example, a vaguely horselike creature known as Hyracotherium was succeeded by Orohippus, then Epihippus, then Mesohippus, which in turn were succeeded by a variety of horsey American critters. Some of them even galloped across the Bering land bridge into Asia, then onward to Europe and Africa. By five million years ago they had nearly all disappeared, leaving behind Dinohippus, which was succeeded by Equus, the modern genus of horse. Not all these fossil links had been unearthed in Darwin's day, but he captured the essence of the matter anyway. Again, were such sequences just coincidental? No, Darwin argued. Closely allied species succeed one another in time, as well as living nearby in space, because they're related through evolutionary descent.
Embryology too involved patterns that couldn't be explained by coincidence. Why does the embryo of a mammal pass through stages resembling stages of the embryo of a reptile? Why is one of the larval forms of a barnacle, before metamorphosis, so similar to the larval form of a shrimp? Why do the larvae of moths, flies, and beetles resemble one another more than any of them resemble their respective adults? Because, Darwin wrote, "the embryo is the animal in its less modified state" and that state "reveals the structure of its progenitor."
Morphology, his fourth category of evidence, was the "very soul" of natural history, according to Darwin. Even today it's on display in the layout and organization of any zoo. Here are the monkeys, there are the big cats, and in that building are the alligators and crocodiles. Birds in the aviary, fish in the aquarium. Living creatures can be easily sorted into a hierarchy of categories"not just species but genera, families, orders, whole kingdoms"based on which anatomical characters they share and which they don't.
All vertebrate animals have backbones. Among vertebrates, birds have feathers, whereas reptiles have scales. Mammals have fur and mammary glands, not feathers or scales. Among mammals, some have pouches in which they nurse their tiny young. Among these species, the marsupials, some have huge rear legs and strong tails by which they go hopping across miles of arid outback; we call them kangaroos. Bring in modern microscopic and molecular evidence, and you can trace the similarities still further back. All plants and fungi, as well as animals, have nuclei within their cells. All living organisms contain DNA and RNA (except some viruses with RNA only), two related forms of information-coding molecules.
Such a pattern of tiered resemblances"groups of similar species nested within broader groupings, and all descending from a single source"isn't naturally present among other collections of items. You won't find anything equivalent if you try to categorize rocks, or musical instruments, or jewelry. Why not? Because rock types and styles of jewelry don't reflect unbroken descent from common ancestors. Biological diversity does. The number of shared characteristics between any one species and another indicates how recently those two species have diverged from a shared lineage.
-David Quammen, National Geographic Magazine, November 2004
The argument does not end there however.
There are NO rules generated by Creationist or ID studies that are applicable in the "real world".
A well crafted argument in science is first based upon understanding, belief is relatively unimportant.
There are NO rules generated by Creationist or ID studies that are applicable in the "real world".
I would like to add to farmerman's excellent response.
The person who started this thread never claimed to deal with "absolute truth." Absolute truth is an ideal sought by philosophers and theologians. Scientists attempt to explain the natural world in terms of natural phenomena. Darwin based his explanation on a variety of evidence.
Quote:The evidence, as he presented it, mostly fell within four categories: biogeography, paleontology, embryology, and morphology. Biogeography is the study of the geographical distribution of living creatures"that is, which species inhabit which parts of the planet and why. Paleontology investigates extinct life-forms, as revealed in the fossil record. Embryology examines the revealing stages of development (echoing earlier stages of evolutionary history) that embryos pass through before birth or hatching; at a stretch, embryology also concerns the immature forms of animals that metamorphose, such as the larvae of insects. Morphology is the science of anatomical shape and design. Darwin devoted sizable sections of The Origin of Species to these categories.
Biogeography, for instance, offered a great pageant of peculiar facts and patterns. Anyone who considers the biogeographical data, Darwin wrote, must be struck by the mysterious clustering pattern among what he called "closely allied" species"that is, similar creatures sharing roughly the same body plan. Such closely allied species tend to be found on the same continent (several species of zebras in Africa) or within the same group of oceanic islands (dozens of species of honeycreepers in Hawaii, 13 species of Galápagos finch), despite their species-by-species preferences for different habitats, food sources, or conditions of climate. Adjacent areas of South America, Darwin noted, are occupied by two similar species of large, flightless birds (the rheas, Rhea americana and Pterocnemia pennata), not by ostriches as in Africa or emus as in Australia. South America also has agoutis and viscachas (small rodents) in terrestrial habitats, plus coypus and capybaras in the wetlands, not"as Darwin wrote"hares and rabbits in terrestrial habitats or beavers and muskrats in the wetlands. During his own youthful visit to the Galápagos, aboard the survey ship Beagle, Darwin himself had discovered three very similar forms of mockingbird, each on a different island.
Why should "closely allied" species inhabit neighboring patches of habitat? And why should similar habitat on different continents be occupied by species that aren't so closely allied? "We see in these facts some deep organic bond, prevailing throughout space and time," Darwin wrote. "This bond, on my theory, is simply inheritance." Similar species occur nearby in space because they have descended from common ancestors.
Paleontology reveals a similar clustering pattern in the dimension of time. The vertical column of geologic strata, laid down by sedimentary processes over the eons, lightly peppered with fossils, represents a tangible record showing which species lived when. Less ancient layers of rock lie atop more ancient ones (except where geologic forces have tipped or shuffled them), and likewise with the animal and plant fossils that the strata contain. What Darwin noticed about this record is that closely allied species tend to be found adjacent to one another in successive strata. One species endures for millions of years and then makes its last appearance in, say, the middle Eocene epoch; just above, a similar but not identical species replaces it. In North America, for example, a vaguely horselike creature known as Hyracotherium was succeeded by Orohippus, then Epihippus, then Mesohippus, which in turn were succeeded by a variety of horsey American critters. Some of them even galloped across the Bering land bridge into Asia, then onward to Europe and Africa. By five million years ago they had nearly all disappeared, leaving behind Dinohippus, which was succeeded by Equus, the modern genus of horse. Not all these fossil links had been unearthed in Darwin's day, but he captured the essence of the matter anyway. Again, were such sequences just coincidental? No, Darwin argued. Closely allied species succeed one another in time, as well as living nearby in space, because they're related through evolutionary descent.
Embryology too involved patterns that couldn't be explained by coincidence. Why does the embryo of a mammal pass through stages resembling stages of the embryo of a reptile? Why is one of the larval forms of a barnacle, before metamorphosis, so similar to the larval form of a shrimp? Why do the larvae of moths, flies, and beetles resemble one another more than any of them resemble their respective adults? Because, Darwin wrote, "the embryo is the animal in its less modified state" and that state "reveals the structure of its progenitor."
Morphology, his fourth category of evidence, was the "very soul" of natural history, according to Darwin. Even today it's on display in the layout and organization of any zoo. Here are the monkeys, there are the big cats, and in that building are the alligators and crocodiles. Birds in the aviary, fish in the aquarium. Living creatures can be easily sorted into a hierarchy of categories"not just species but genera, families, orders, whole kingdoms"based on which anatomical characters they share and which they don't.
All vertebrate animals have backbones. Among vertebrates, birds have feathers, whereas reptiles have scales. Mammals have fur and mammary glands, not feathers or scales. Among mammals, some have pouches in which they nurse their tiny young. Among these species, the marsupials, some have huge rear legs and strong tails by which they go hopping across miles of arid outback; we call them kangaroos. Bring in modern microscopic and molecular evidence, and you can trace the similarities still further back. All plants and fungi, as well as animals, have nuclei within their cells. All living organisms contain DNA and RNA (except some viruses with RNA only), two related forms of information-coding molecules.
Such a pattern of tiered resemblances"groups of similar species nested within broader groupings, and all descending from a single source"isn't naturally present among other collections of items. You won't find anything equivalent if you try to categorize rocks, or musical instruments, or jewelry. Why not? Because rock types and styles of jewelry don't reflect unbroken descent from common ancestors. Biological diversity does. The number of shared characteristics between any one species and another indicates how recently those two species have diverged from a shared lineage.
-David Quammen, National Geographic Magazine, November 2004
Since evolution happens over a great span of time, no human will ever be able to experience it first hand. Since that's not the case, however, you have to go with the second best thing...assumption. No matter how educated a guess may be, it's still a guess.
Chights wrote:Since evolution happens over a great span of time, no human will ever be able to experience it first hand. Since that's not the case, however, you have to go with the second best thing...assumption. No matter how educated a guess may be, it's still a guess.
Some guesses are better supported by evidence than others. The mechanisms of evolution, especially adaptation, have been observed by those studying microorganisms that cause disease. Bacteria changes rapidly to adapt to antibacterial agents. This is natural selection in action and has been observed by epidemiologists.
Since evolution happens over a great span of time, no human will ever be able to experience it first hand. Since that's not the case, however, you have to go with the second best thing...assumption. No matter how educated a guess may be, it's still a guess
What's that understanding based on? Understanding comes from, perceptions, beliefs, and experience
Understanding in these sciences comes from evidence and facts. All these are repeatable in discovery and dont require mere beliefs.
In order for there to be any evidence or facts, you have to first understand what you're actually talking about
I would think that if anyone completely understood anything, that it would be a complete nightmare.
Quote:In order for there to be any evidence or facts, you have to first understand what you're actually talking about
Evidence and facts are lying all around us, whether we understand their implications or not. They begin to assemble themselves into a structure and our understanding grows from that. Newtonian physics had a few outlyers and anomalies that really didnt matter until further evidence (such as the properties of light or the existence of radiation) added to the story.