http://platonicrealms.com/encyclopedia/Zenos-Paradox-of-the-Tortoise-and-Achilles
Zeno’s Paradox of the Tortoise and Achilles
Zeno of Elea (c. 450 BCE) is credited with creating several famous paradoxes, and perhaps the best known is the paradox of the Tortoise and Achilles. (Achilles was the great Greek hero of Homer’s The Iliad.) It has inspired many writers and thinkers through the ages, notably Lewis Carroll (see Carroll’s Paradox) and Douglas Hofstadter, both of whom wrote expository dialogues involving the Tortoise and Achilles.
The original goes something like this:
The Tortoise challenged Achilles to a race, claiming that he would win as long as Achilles gave him a small head start. Achilles laughed at this, for of course he was a mighty warrior and swift of foot, whereas the Tortoise was heavy and slow.
“How big a head start do you need?” he asked the Tortoise with a smile.
“Ten meters,” the latter replied.
Achilles laughed louder than ever. “You will surely lose, my friend, in that case,” he told the Tortoise, “but let us race, if you wish it.”
“On the contrary,” said the Tortoise, “I will win, and I can prove it to you by a simple argument.”
“Go on then,” Achilles replied, with less confidence than he felt before. He knew he was the superior athlete, but he also knew the Tortoise had the sharper wits, and he had lost many a bewildering argument with him before this.
“Suppose,” began the Tortoise, “that you give me a 10-meter head start.
Would you say that you could cover that 10 meters between us very quickly?”
“Very quickly,” Achilles affirmed.
“And in that time, how far should I have gone, do you think?”
“Perhaps a meter—no more,” said Achilles after a moment’s thought.
“Very well,” replied the Tortoise, “so now there is a meter between us. And you would catch up that distance very quickly?”
“Very quickly indeed!”
“And yet, in that time I shall have gone a little way farther, so that now you must catch that distance up, yes?”
“Ye-es,” said Achilles slowly.
“And while you are doing so, I shall have gone a little way farther, so that you must then catch up the new distance,” the Tortoise continued smoothly.
Achilles said nothing.
“And so you see, in each moment you must be catching up the distance between us, and yet I—at the same time—will be adding a new distance, however small, for you to catch up again.”
“Indeed, it must be so,” said Achilles wearily.
“And so you can never catch up,” the Tortoise concluded sympathetically.
“You are right, as always,” said Achilles sadly—and conceded the race.
Zeno’s Paradox may be rephrased as follows.
Suppose I wish to cross the room. First, of course, I must cover half the distance. Then, I must cover half the remaining distance. Then, I must cover half the remaining distance. Then I must cover half the remaining distance…and so on forever. The consequence is that I can never get to the other side of the room.
What this actually does is to make all motion impossible, for before I can cover half the distance I must cover half of half the distance, and before I can do that I must cover half of half of half of the distance, and so on, so that in reality I can never move any distance at all, because doing so involves moving an infinite number of small intermediate distances first.
Now, since motion obviously is possible, the question arises, what is wrong with Zeno? What is the "flaw in the logic?" If you are giving the matter your full attention, it should begin to make you squirm a bit, for on its face the logic of the situation seems unassailable. You shouldn’t be able to cross the room, and the Tortoise should win the race! Yet we know better. Hmm.
Rather than tackle Zeno head-on, let us pause to notice something remarkable. Suppose we take Zeno’s Paradox at face value for the moment, and agree with him that before I can walk a mile I must first walk a half-mile. And before I can walk the remaining half-mile I must first cover half of it, that is, a quarter-mile, and then an eighth-mile, and then a sixteenth-mile, and then a thirty-secondth-mile, and so on. Well, suppose I could cover all these infinite number of small distances, how far should I have walked? One mile! In other words.
What is wrong with the logic used above? (My comment Alan McDougall)