@ahmetsecer,
Thats a nice copy and paste... instead why don't you try reading more scientific work instead of ID dribble.
Insight Into Eye Evolution Deals Blow To Intelligent Design
Researcher Sebastian Shimeld from Oxford approached this question by examining the evolutionary origin of one crystallin protein family, known as the βγ-crystallins. Focusing on sea squirts, the researchers found that these creatures possess a single crystallin gene, which is expressed in its primitive light-sensing system. The identification of this single crystallin gene strongly suggests that it is the gene from which the more complex vertebrate βγ-crystallins evolved.
Perhaps even more remarkable is the finding that expression of the sea squirt crystallin gene is controlled by genetic elements that also respond to the factors that control lens development in vertebrates. This was demonstrated when regulatory regions of the sea squirt gene were transferred to frog embryos where they drove gene expression in the tadpoles' own visual system, including the lens.
The researchers say this suggests that prior to the evolution of the lens, there was a regulatory link between two tiers of genes, those that would later become responsible for controlling lens development, and those that would help give the lens its special physical properties. This combination of genes appears to have then been selected in an early vertebrate during the evolution of its visual system, giving rise to the lens.
The new findings deal a serious blow to the Intelligent Design movement which has long contended that the lack of an apparent evolutionary pathway for complex eye development indicated the presence of a supreme designer.
Evolution: Library: Evolution of the Eye
Here's how some scientists think some eyes may have evolved: The simple light-sensitive spot on the skin of some ancestral creature gave it some tiny survival advantage, perhaps allowing it to evade a predator. Random changes then created a depression in the light-sensitive patch, a deepening pit that made "vision" a little sharper. At the same time, the pit's opening gradually narrowed, so light entered through a small aperture, like a pinhole camera.
Every change had to confer a survival advantage, no matter how slight. Eventually, the light-sensitive spot evolved into a retina, the layer of cells and pigment at the back of the human eye. Over time a lens formed at the front of the eye. It could have arisen as a double-layered transparent tissue containing increasing amounts of liquid that gave it the convex curvature of the human eye.
In fact, eyes corresponding to every stage in this sequence have been found in existing living species. The existence of this range of less complex light-sensitive structures supports scientists' hypotheses about how complex eyes like ours could evolve. The first animals with anything resembling an eye lived about 550 million years ago. And, according to one scientist's calculations, only 364,000 years would have been needed for a camera-like eye to evolve from a light-sensitive patch.