@vinsan,
there is actually a very simple solution to this problem.
We have: a^5+b^5 = c^5+d^5 (1)
Therefore: a^5+b^5 - (c^5 + d^5) = 0
We can see that this has the form of w + x - (y + z) = 0 (2)
Now let us take a simple solution that satisfies this equation e.g:
1 + 6 - (3 + 4) = 0 => 7 - 7 = 0
but a^5 = 1 therefore a = 1^(1/5) = 1
b^5 = 6 therefore b = 6^(1/5) = 1.431.....
c^5 = 3 therefore c = 3^(1/5) = 1.246......
d^5 = 4 therefore d = 4^(1/5) = 1.32......
These are positive solutions for a, b, c, d. Choose any values w,x,y,z for (2) that satisfy the equation and you can find an ifinite number of values for a,b,c,d in (1) as w,x,y,z are only bound by w+x = y+z.