New research suggests that lightening and volcanoes may have sparked early life on Earth. Researcher Jeffrey Bada at Scripps Institution of Oceanography at UC San Diego and colleagues reanalyzed Stanley Miller’s classic origin of life experiment, offering a new analysis on how the essential building blocks of life may have arose from volcanic eruptions.
“We believed there was more to be learned from Miller’s original experiment,” said Bada, Scripps professor of marine chemistry and co-author of the paper. “We found that a modern day version of the volcanic apparatus produces a wider variety of compounds.”
Miller’s classic “primordial soup” experiment, published in Science in 1953, is still widely used today in high school chemistry labs to mimic chemical reactions that occur in vapor-rich volcanic eruptions. The experiment circulated methane, ammonia, water vapor and hydrogen in a closed experiment, simulating the earth’s early atmosphere and sent a lightning-like spark through it. Over a series of days, organic compounds formed in the mixture, demonstrating how Earth’s primitive atmosphere may have given rise to life.
Bada’s lab is the first to perform follow up studies using Miller’s original apparatus and chemicals samples, which were discovered following Miller’s death in 2007. Researchers reanalyzed 11 of the original samples using contemporary analytical chemistry techniques and produced 22 amino acids, the building blocks of proteins, 10 of which had not been identified previously by Miller.