@markr,
Here are the numbers
0-400 expressed with two fours. Henceforth, the function Z[expression containing two fours that equals N] represents
N-400 through
N+400.
0 = 4-4
1 = 4/4
2 = 4/√4
<SNIP: for 3 to 197, see THIS post.>
198 = !4*φ(P(!4))
199 = P(Γ(4)!!)-4!
200 = P(Γ(4)!!)-P(!4)
(the expressions in red below are calculated in detail in the footnotes)
201 = P(P([P(P(√4))]!!)) - T(4) ("T(n)" is nth triangular number)
202 = P(P([P(P(√4))]!!)) - !4
203 = P(P([P(P(√4))]!!)) - 4!!
204 = P(P([P(P(√4))]!!)) - P(4)
205 = P(P([P(P(√4))]!!)) - Γ(4)
206 = P(P([P(P(√4))]!!)) - P(P(√4))
207 = P(P([P(P(√4))]!!)) - 4
208 = P(P([P(P(√4))]!!)) - P(√4)
209 = P(P([P(P(√4))]!!)) - √4
210 = P(P([P(P(√4))]!!)) - !√4
211 =
P(P([P(P(√4))]!!)) * !√4
212 = P(P([P(P(√4))]!!)) + !√4
213 = P(P([P(P(√4))]!!)) + √4
214 = P(P([P(P(√4))]!!)) + P(√4)
215 = P(P([P(P(√4))]!!)) + 4
216 = P(P([P(P(√4))]!!)) + P(P(√4))
217 = P(P([P(P(√4))]!!)) + Γ(4)
218 = P(P([P(P(√4))]!!)) + P(4)
219 = P(P([P(P(√4))]!!)) + 4!!
220 = P(P([P(P(√4))]!!)) + !4
221 = P(P([P(P(√4))]!!)) + T(4)
222 = T(T(Γ(4))) - !4
223 = T(T(Γ(4))) - 4!!
224 = T(T(Γ(4))) - P(4)
225 = T(T(Γ(4))) - Γ(4)
226 = T(T(Γ(4))) - P(P(√4))
227 = T(T(Γ(4))) - 4
228 = T(T(Γ(4))) - P(√4)
229 = T(T(Γ(4))) - √4
230 = T(T(Γ(4))) - !√4
231 =
T(T(Γ(4))) * !√4
232 = T(T(Γ(4))) + !√4
233 = T(T(Γ(4))) + √4
234 = T(T(Γ(4))) + P(√4)
235 = T(T(Γ(4))) + 4
236 = T(T(Γ(4))) + P(P(√4))
237 = T(T(Γ(4))) + Γ(4)
238 = T(T(Γ(4))) + P(4)
239 = T(T(Γ(4))) + 4!!
240 = T(T(Γ(4))) + !4
241 = T(P(P(4))) - φ(P(Γ(4)))
242 = T(P(P(4))) - P(P(P(√4)))
243 = T(P(P(4))) - T(4)
244 = T(P(P(4))) - !4
245 = T(P(P(4))) - 4!!
246 = T(P(P(4))) - P(4)
247 = T(P(P(4))) - Γ(4)
248 = T(P(P(4))) - P(P(√4))
249 = T(P(P(4))) - 4
250 = T(P(P(4))) - P(√4)
251 = T(P(P(4))) - √4
252 = T(P(P(4))) - !√4
253 =
T(P(P(4))) * !√4
254 = T(P(P(4))) + !√4
255 = T(P(P(4))) + √4
256 = T(P(P(4))) + P(√4)
257 = T(P(P(4))) + 4
258 = T(P(P(4))) + P(P(√4))
259 = T(P(P(4))) + Γ(4)
260 = T(P(P(4))) + P(4)
261 = T(P(P(4))) + 4!!
262 = T(P(P(4))) + !4
263 = T(P(P(4))) + T(4)
264 = T(P(P(4))) + P(P(P(√4)))
265 = T(P(P(4))) + φ(P(Γ(4)))
266 = P(P(P(P(4)))) - P(P(P(√4)))
267 = P(P(P(P(4)))) - T(4)
268 = P(P(P(P(4)))) - !4
269 = P(P(P(P(4)))) - 4!!
270 = P(P(P(P(4)))) - P(4)
271 = P(P(P(P(4)))) - Γ(4)
272 = P(P(P(P(4)))) - P(P(√4))
273 = P(P(P(P(4)))) - 4
274 = P(P(P(P(4)))) - P(√4)
275 = P(P(P(P(4)))) - √4
276 = P(P(P(P(4)))) - !√4
277 =
P(P(P(P(4)))) * !√4
278 = P(P(P(P(4)))) + !√4
279 = P(P(P(P(4)))) + √4
280 = P(P(P(P(4)))) + P(√4)
281 = P(P(P(P(4)))) + 4
282 = P(P(P(P(4)))) + P(P(√4))
283 = P(P(P(P(4)))) + Γ(4)
284 = P(P(P(P(4)))) + P(4)
285 = P(P(P(P(4)))) + 4!!
286 = P(P(P(P(4)))) + !4
287 = P(P(P(P(4)))) + T(4)
288 = P(P(P(P(4)))) + P(P(P(√4)))
289 = T(4!) - P(P(P(√4)))
290 = T(4!) - T(4)
291 = T(4!) - !4
292 = T(4!) - 4!!
293 = T(4!) - P(4)
294 = T(4!) - Γ(4)
295 = T(4!) - P(P(√4))
296 = T(4!) - 4
297 = T(4!) - P(√4)
298 = T(4!) - √4
299 = T(4!) - !√4
300 =
T(4!) * !√4
301 = T(4!) + !√4
302 = T(4!) + √4
303 = T(4!) + P(√4)
304 = T(4!) + 4
305 = T(4!) + P(P(√4))
306 = T(4!) + Γ(4)
307 = T(4!) + P(4)
308 = T(4!) + 4!!
309 = T(4!) + !4
310 = T(4!) + T(4)
311 = P(T(P(P(P(√4)))) - Γ(4)
312 = P(T(P(P(P(√4)))) - P(P(√4))
313 = P(T(P(P(P(√4)))) - 4
314 = P(T(P(P(P(√4)))) - P(√4)
315 = P(T(P(P(P(√4)))) - √4
316 = P(T(P(P(P(√4)))) - !√4
317 =
P(T(P(P(P(√4)))) * !√4
318 = P(T(P(P(P(√4)))) + !√4
319 = P(T(P(P(P(√4)))) + √4
320 = P(T(P(P(P(√4)))) + P(√4)
321 = P(T(P(P(P(√4)))) + 4
322 = P(T(P(P(P(√4)))) + P(P(√4))
323 = P(T(P(P(P(√4)))) + Γ(4)
324 = P(T(P(P(P(√4)))) + P(4)
325 = P(T(P(P(P(√4)))) + 4!!
326 = P(T(P(P(P(√4)))) + !4
327 = P(T(P(P(P(√4)))) + T(4)
328 = P(T(P(P(P(√4)))) + P(P(P(√4)))
329 = P(T(P(P(P(√4)))) + φ(P(Γ(4)))
330 = P(T(P(P(P(√4)))) + P(Γ(4))
331 =
P(P(P(4!!))) * !√4
332 = P(P(P(4!!))) + !√4
333 = P(P(P(4!!))) + √4
334 = P(P(P(4!!))) + P(√4)
335 = P(P(P(4!!))) + 4
336 = P(P(P(4!!))) + P(P(√4))
337 = P(P(P(4!!))) + Γ(4)
338 = P(P(P(4!!))) + P(4)
339 = P(P(P(4!!))) + 4!!
340 = P(P(P(4!!))) + !4
341 = P(P(P(4!!))) + T(4)
342 = P(P(P(4!!))) + P(P(P(√4)))
343 = P(P(φ(T(P(P(P(√4)))))) - T(4)
344 = P(P(φ(T(P(P(P(√4)))))) - !4
345 = P(P(φ(T(P(P(P(√4)))))) - 4!!
346 = P(P(φ(T(P(P(P(√4)))))) - P(4)
347 = P(P(φ(T(P(P(P(√4)))))) - Γ(4)
348 = P(P(φ(T(P(P(P(√4)))))) - P(P(√4))
349 = P(P(φ(T(P(P(P(√4)))))) - 4
350 = P(P(φ(T(P(P(P(√4)))))) - P(√4)
351 = P(P(φ(T(P(P(P(√4)))))) - √4
352 = P(P(φ(T(P(P(P(√4)))))) - !√4
353 =
P(P(φ(T(P(P(P(√4)))))) * !√4
354 = P(P(φ(T(P(P(P(√4)))))) + !√4
355 = P(P(φ(T(P(P(P(√4)))))) + √4
356 = P(P(φ(T(P(P(P(√4)))))) + P(√4)
357 = P(P(φ(T(P(P(P(√4)))))) + 4
358 = P(P(φ(T(P(P(P(√4)))))) + P(P(√4))
359 = P(P(φ(T(P(P(P(√4)))))) + Γ(4)
360 = P(P(φ(T(P(P(P(√4)))))) + P(4)
361 = P(P(φ(T(P(P(P(√4)))))) + 4!!
362 = P(P(φ(T(P(P(P(√4)))))) + !4
363 = P(P(φ(T(P(P(P(√4)))))) + T(4)
364 = P(P(φ(T(P(P(P(√4)))))) + P(P(P(√4)))
365 = P(P(φ(T(P(P(P(√4)))))) + φ(P(Γ(4)))
366 = P(P(φ(T(P(P(P(√4)))))) + P(Γ(4))
367 = F[P(P(√4))!!] - T(4)
368 = F[P(P(√4))!!] - !4
369 = F[P(P(√4))!!] - 4!!
370 = F[P(P(√4))!!] - P(4)
371 = F[P(P(√4))!!] - Γ(4)
372 = F[P(P(√4))!!] - P(P(√4))
373 = F[P(P(√4))!!] - 4
374 = F[P(P(√4))!!] - P(√4)
375 = F[P(P(√4))!!] - √4
376 = F[P(P(√4))!!] - !√4
377 =
F[P(P(√4))!!] * !√4
378 = F[P(P(√4))!!] + !√4
379 = F[P(P(√4))!!] + √4
380 = F[P(P(√4))!!] + P(√4)
381 = F[P(P(√4))!!] + 4
382 = F[P(P(√4))!!] + P(P(√4))
383 = F[P(P(√4))!!] + Γ(4)
384 = F[P(P(√4))!!] + P(4)
385 = F[P(P(√4))!!] + 4!!
386 = F[P(P(√4))!!] + !4
387 = F[P(P(√4))!!] + T(4)
388 = F[P(P(√4))!!] + P(P(P(√4)))
389 = F[P(P(√4))!!] + φ(P(Γ(4)))
390 = F[P(P(√4))!!] + P(Γ(4))
391 = P(P(φ(P(!4)))) - T(4)
392 = P(P(φ(P(!4)))) - !4
393 = P(P(φ(P(!4)))) - 4!!
394 = P(P(φ(P(!4)))) - P(4)
395 = P(P(φ(P(!4)))) - Γ(4)
396 = P(P(φ(P(!4)))) - P(P(√4))
397 = P(P(φ(P(!4)))) - 4
398 = P(P(φ(P(!4)))) - P(√4)
399 = P(P(φ(P(!4)))) - √4
400 = P(P(φ(P(!4)))) - !√4
401 =
P(P(φ(P(!4)))) * !√4
FOOTNOTES:
------------------------------
The
"... * !√4" part in what follows is just is multiplication by 1, so we just want to show the red terms equal the numbers to the left...
211 =
P(P([P(P(√4))]!!)) * !√4
P(P([P(P(√4))]!!)) = P(P([P(P(2))]!!)) = P(P(5!!)) = P(P(15)) = P(47) = 211
231 =
T(T(Γ(4))) * !√4
T(T(Γ(4))) = T(T(6)) = T(21) = 231
253 =
T(P(P(4))) * !√4
T(P(P(4))) = T(P(7)) = T(17) = 253
277 =
P(P(P(P(4)))) * !√4
P(P(P(P(4)))) = P(P(P(7))) = P(P(17)) = P(59) = 277
300 =
T(4!) * !√4
T(4!) = T(24) = 300
317 =
P(T(P(P(P(√4)))) * !√4
P(T(P(P(P(√4))))) = P(T(P(P(P(2))))) = P(T(P(5))) = P(T(11)) = P(66) = 317
331 =
P(P(P(4!!))) * !√4
P(P(P(4!!))) = P(P(P(8))) = P(P(19)) = P(67) = 331
353 =
P(P(φ(T(P(P(P(√4)))))) * !√4
P(P(φ(T(P(P(P(√4)))))) = P(P(φ(T(P(P(P(2)))))) = P(P(φ(T(P(5)))) = P(P(φ(T(11))) = P(P(φ(66)) = P(P(20)) = P(71) = 353
377 =
F[P(P(√4))!!] * !√4
F[P(P(√4))!!] = F[P(P(2))!!] = F[5!!] = F[15] = (15th number in the sequence 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,...) = 377
Some people would consider 377 to be the 14th term in the Fibonacci sequence,
but that's not a problem, because in that case we have:
377 = F[14] = F[√196] = F[√[φ(197)]] = F[√[φ(P(45))]] = F[√[φ(P(T(9)))]] = F[√[φ(P(T(!4)))]]
401 =
P(P(φ(P(!4)))) * !√4
P(P(φ(P(!4)))) = P(P(φ(P(9)))) = P(P(φ(23))) = P(P(22)) = P(79) = 401