2
   

[Math Game] The Four Fours

 
 
markr
 
  1  
Reply Sat 11 Jan, 2014 05:35 pm
@markr,
Z[P(φ(P(Γ(4)))) * P(P(Γ(4)))] = Z[37 * 41] = Z[1517]
which covers 1317-1717

see definition of Z[expression] on page 5 of this thread
Kolyo
 
  1  
Reply Sat 11 Jan, 2014 06:15 pm
Z[P(4!!)*P(4!)] = Z[19*89] = Z[1691]

Covers everything from 1491 to 1891.
Kolyo
 
  1  
Reply Sat 11 Jan, 2014 06:18 pm
@Kolyo,
Z[P(4!!)*P(4)!!] = Z[19*105] = Z[1995]

Covers everything from 1795 to 2195.
raprap
 
  1  
Reply Sat 11 Jan, 2014 07:05 pm
@markr,
I'm recalling a topic I seem to remember from an Abstract Algebra class long ago and mapping transforms for integers. In general the length of a cycle of a mapping transform for integers is that integer--somehow I seem to be connecting this in my foggy memory to Fermat's Little Theorem, and about how these mapping transforms and their inverses being one to one.

So using these transforms you can use a one to one mapping from any number to any other as long as the integral cycle isn't completed.

example of a 13 digits cycle
1>3>5>7>9>11>0>2>4>6>8>10>12

So if I have a 4 and I need a 11 I apply this mapping 10 times (or the inverse 3 times).

Morover; by definition these mappings transforms and their inverses, are one to one and are functions.(?)

Rap
markr
 
  1  
Reply Sat 11 Jan, 2014 10:29 pm
@raprap,
Are you looking to add these cycles as functions to use? How would you express them? Seems to me you'd need 4 integers:
- length of cycle (13 in your example)
- delta between values (2 in your example)
- starting value (4 in your example)
- number of steps to take (10 in your example)

This would seem to be an arbitrary function - as opposed to the, perhaps obscure, but at least documented in multiple places, functions we've been using.

My 2 cents.
0 Replies
 
markr
 
  1  
Reply Sat 11 Jan, 2014 10:59 pm
@Kolyo,
Z[P(P(P(4))) * φ(P(P(Γ(4))))] = Z[59 * 40] = Z[2360]
which covers 2160-2560

see definition of Z[expression] on page 5 of this thread
markr
 
  1  
Reply Sat 11 Jan, 2014 11:07 pm
@markr,
Z[P(P(4!!)) * P(P(Γ(4)))] = Z[67 * 41] = Z[2747]
which covers 2547-2947

see definition of Z[expression] on page 5 of this thread
Kolyo
 
  1  
Reply Sun 12 Jan, 2014 12:18 am
@markr,
Z[φφPφφφφPφφPTPΓ(4) * P(P(P(P(√4))))] = Z[100*31] = Z[3100]


where T(n) is the nth "triangular number" from the sequence 1,3,6,10,...

This takes care of numbers 2900 through 3300.



====

Note:

φφPφφφφPφφPTPΓ(4) = φφPφφφφPφφPTP(6) = φφPφφφφPφφPT(13) = φφPφφφφPφφP(91) = φφPφφφφPφφ(467) = φφPφφφφPφ(466)
= φφPφφφφP(232) = φφPφφφφ(1459) = φφPφφφ(1458) = φφPφφ(486) = φφPφ(162) = φφP(54) = φφ(251) = φ(250) = 100

P(P(P(P(√4)))) = P(P(P(P(2)))) = P(P(P(3))) = P(P(5)) = P(11) = 31
Kolyo
 
  1  
Reply Sun 12 Jan, 2014 12:23 am
@Kolyo,
Z[φ(4$) * T(4!!)] = Z[96*36] = Z[3456]

which covers 3256 through 3656.

...where T(n) is the nth triangular number; and "n$" is superfactorial.
markr
 
  1  
Reply Sun 12 Jan, 2014 04:50 pm
@Kolyo,
Z[φ(P(P(P(√4)))) * (4!!)!!] = Z[10 * 384] = Z[3840]
which covers 3640-4040

see definition of Z[expression] on page 5 of this thread
Kolyo
 
  1  
Reply Sun 12 Jan, 2014 07:56 pm
@markr,
Z[P(4)!! * φ(T(T(4)))] = Z[7!! * φ(55)] = Z[105 * 40] = Z[4200]
which covers 4000-4400

T(n) is the nth triangular number;
see definition of Z[expression] on page 5 of this thread
Kolyo
 
  1  
Reply Sun 12 Jan, 2014 10:27 pm
@markr,
Here are the numbers 0-400 expressed with two fours. Henceforth, the function Z[expression containing two fours that equals N] represents N-400 through N+400.

0 = 4-4
1 = 4/4
2 = 4/√4
<SNIP: for 3 to 197, see THIS post.>
198 = !4*φ(P(!4))
199 = P(Γ(4)!!)-4!
200 = P(Γ(4)!!)-P(!4)
(the expressions in red below are calculated in detail in the footnotes)
201 = P(P([P(P(√4))]!!)) - T(4) ("T(n)" is nth triangular number)
202 = P(P([P(P(√4))]!!)) - !4
203 = P(P([P(P(√4))]!!)) - 4!!
204 = P(P([P(P(√4))]!!)) - P(4)
205 = P(P([P(P(√4))]!!)) - Γ(4)
206 = P(P([P(P(√4))]!!)) - P(P(√4))
207 = P(P([P(P(√4))]!!)) - 4
208 = P(P([P(P(√4))]!!)) - P(√4)
209 = P(P([P(P(√4))]!!)) - √4
210 = P(P([P(P(√4))]!!)) - !√4
211 = P(P([P(P(√4))]!!)) * !√4
212 = P(P([P(P(√4))]!!)) + !√4
213 = P(P([P(P(√4))]!!)) + √4
214 = P(P([P(P(√4))]!!)) + P(√4)
215 = P(P([P(P(√4))]!!)) + 4
216 = P(P([P(P(√4))]!!)) + P(P(√4))
217 = P(P([P(P(√4))]!!)) + Γ(4)
218 = P(P([P(P(√4))]!!)) + P(4)
219 = P(P([P(P(√4))]!!)) + 4!!
220 = P(P([P(P(√4))]!!)) + !4
221 = P(P([P(P(√4))]!!)) + T(4)
222 = T(T(Γ(4))) - !4
223 = T(T(Γ(4))) - 4!!
224 = T(T(Γ(4))) - P(4)
225 = T(T(Γ(4))) - Γ(4)
226 = T(T(Γ(4))) - P(P(√4))
227 = T(T(Γ(4))) - 4
228 = T(T(Γ(4))) - P(√4)
229 = T(T(Γ(4))) - √4
230 = T(T(Γ(4))) - !√4
231 = T(T(Γ(4))) * !√4
232 = T(T(Γ(4))) + !√4
233 = T(T(Γ(4))) + √4
234 = T(T(Γ(4))) + P(√4)
235 = T(T(Γ(4))) + 4
236 = T(T(Γ(4))) + P(P(√4))
237 = T(T(Γ(4))) + Γ(4)
238 = T(T(Γ(4))) + P(4)
239 = T(T(Γ(4))) + 4!!
240 = T(T(Γ(4))) + !4
241 = T(P(P(4))) - φ(P(Γ(4)))
242 = T(P(P(4))) - P(P(P(√4)))
243 = T(P(P(4))) - T(4)
244 = T(P(P(4))) - !4
245 = T(P(P(4))) - 4!!
246 = T(P(P(4))) - P(4)
247 = T(P(P(4))) - Γ(4)
248 = T(P(P(4))) - P(P(√4))
249 = T(P(P(4))) - 4
250 = T(P(P(4))) - P(√4)
251 = T(P(P(4))) - √4
252 = T(P(P(4))) - !√4
253 = T(P(P(4))) * !√4
254 = T(P(P(4))) + !√4
255 = T(P(P(4))) + √4
256 = T(P(P(4))) + P(√4)
257 = T(P(P(4))) + 4
258 = T(P(P(4))) + P(P(√4))
259 = T(P(P(4))) + Γ(4)
260 = T(P(P(4))) + P(4)
261 = T(P(P(4))) + 4!!
262 = T(P(P(4))) + !4
263 = T(P(P(4))) + T(4)
264 = T(P(P(4))) + P(P(P(√4)))
265 = T(P(P(4))) + φ(P(Γ(4)))
266 = P(P(P(P(4)))) - P(P(P(√4)))
267 = P(P(P(P(4)))) - T(4)
268 = P(P(P(P(4)))) - !4
269 = P(P(P(P(4)))) - 4!!
270 = P(P(P(P(4)))) - P(4)
271 = P(P(P(P(4)))) - Γ(4)
272 = P(P(P(P(4)))) - P(P(√4))
273 = P(P(P(P(4)))) - 4
274 = P(P(P(P(4)))) - P(√4)
275 = P(P(P(P(4)))) - √4
276 = P(P(P(P(4)))) - !√4
277 = P(P(P(P(4)))) * !√4
278 = P(P(P(P(4)))) + !√4
279 = P(P(P(P(4)))) + √4
280 = P(P(P(P(4)))) + P(√4)
281 = P(P(P(P(4)))) + 4
282 = P(P(P(P(4)))) + P(P(√4))
283 = P(P(P(P(4)))) + Γ(4)
284 = P(P(P(P(4)))) + P(4)
285 = P(P(P(P(4)))) + 4!!
286 = P(P(P(P(4)))) + !4
287 = P(P(P(P(4)))) + T(4)
288 = P(P(P(P(4)))) + P(P(P(√4)))
289 = T(4!) - P(P(P(√4)))
290 = T(4!) - T(4)
291 = T(4!) - !4
292 = T(4!) - 4!!
293 = T(4!) - P(4)
294 = T(4!) - Γ(4)
295 = T(4!) - P(P(√4))
296 = T(4!) - 4
297 = T(4!) - P(√4)
298 = T(4!) - √4
299 = T(4!) - !√4
300 = T(4!) * !√4
301 = T(4!) + !√4
302 = T(4!) + √4
303 = T(4!) + P(√4)
304 = T(4!) + 4
305 = T(4!) + P(P(√4))
306 = T(4!) + Γ(4)
307 = T(4!) + P(4)
308 = T(4!) + 4!!
309 = T(4!) + !4
310 = T(4!) + T(4)
311 = P(T(P(P(P(√4)))) - Γ(4)
312 = P(T(P(P(P(√4)))) - P(P(√4))
313 = P(T(P(P(P(√4)))) - 4
314 = P(T(P(P(P(√4)))) - P(√4)
315 = P(T(P(P(P(√4)))) - √4
316 = P(T(P(P(P(√4)))) - !√4
317 = P(T(P(P(P(√4)))) * !√4
318 = P(T(P(P(P(√4)))) + !√4
319 = P(T(P(P(P(√4)))) + √4
320 = P(T(P(P(P(√4)))) + P(√4)
321 = P(T(P(P(P(√4)))) + 4
322 = P(T(P(P(P(√4)))) + P(P(√4))
323 = P(T(P(P(P(√4)))) + Γ(4)
324 = P(T(P(P(P(√4)))) + P(4)
325 = P(T(P(P(P(√4)))) + 4!!
326 = P(T(P(P(P(√4)))) + !4
327 = P(T(P(P(P(√4)))) + T(4)
328 = P(T(P(P(P(√4)))) + P(P(P(√4)))
329 = P(T(P(P(P(√4)))) + φ(P(Γ(4)))
330 = P(T(P(P(P(√4)))) + P(Γ(4))
331 = P(P(P(4!!))) * !√4
332 = P(P(P(4!!))) + !√4
333 = P(P(P(4!!))) + √4
334 = P(P(P(4!!))) + P(√4)
335 = P(P(P(4!!))) + 4
336 = P(P(P(4!!))) + P(P(√4))
337 = P(P(P(4!!))) + Γ(4)
338 = P(P(P(4!!))) + P(4)
339 = P(P(P(4!!))) + 4!!
340 = P(P(P(4!!))) + !4
341 = P(P(P(4!!))) + T(4)
342 = P(P(P(4!!))) + P(P(P(√4)))
343 = P(P(φ(T(P(P(P(√4)))))) - T(4)
344 = P(P(φ(T(P(P(P(√4)))))) - !4
345 = P(P(φ(T(P(P(P(√4)))))) - 4!!
346 = P(P(φ(T(P(P(P(√4)))))) - P(4)
347 = P(P(φ(T(P(P(P(√4)))))) - Γ(4)
348 = P(P(φ(T(P(P(P(√4)))))) - P(P(√4))
349 = P(P(φ(T(P(P(P(√4)))))) - 4
350 = P(P(φ(T(P(P(P(√4)))))) - P(√4)
351 = P(P(φ(T(P(P(P(√4)))))) - √4
352 = P(P(φ(T(P(P(P(√4)))))) - !√4
353 = P(P(φ(T(P(P(P(√4)))))) * !√4
354 = P(P(φ(T(P(P(P(√4)))))) + !√4
355 = P(P(φ(T(P(P(P(√4)))))) + √4
356 = P(P(φ(T(P(P(P(√4)))))) + P(√4)
357 = P(P(φ(T(P(P(P(√4)))))) + 4
358 = P(P(φ(T(P(P(P(√4)))))) + P(P(√4))
359 = P(P(φ(T(P(P(P(√4)))))) + Γ(4)
360 = P(P(φ(T(P(P(P(√4)))))) + P(4)
361 = P(P(φ(T(P(P(P(√4)))))) + 4!!
362 = P(P(φ(T(P(P(P(√4)))))) + !4
363 = P(P(φ(T(P(P(P(√4)))))) + T(4)
364 = P(P(φ(T(P(P(P(√4)))))) + P(P(P(√4)))
365 = P(P(φ(T(P(P(P(√4)))))) + φ(P(Γ(4)))
366 = P(P(φ(T(P(P(P(√4)))))) + P(Γ(4))
367 = F[P(P(√4))!!] - T(4)
368 = F[P(P(√4))!!] - !4
369 = F[P(P(√4))!!] - 4!!
370 = F[P(P(√4))!!] - P(4)
371 = F[P(P(√4))!!] - Γ(4)
372 = F[P(P(√4))!!] - P(P(√4))
373 = F[P(P(√4))!!] - 4
374 = F[P(P(√4))!!] - P(√4)
375 = F[P(P(√4))!!] - √4
376 = F[P(P(√4))!!] - !√4
377 = F[P(P(√4))!!] * !√4
378 = F[P(P(√4))!!] + !√4
379 = F[P(P(√4))!!] + √4
380 = F[P(P(√4))!!] + P(√4)
381 = F[P(P(√4))!!] + 4
382 = F[P(P(√4))!!] + P(P(√4))
383 = F[P(P(√4))!!] + Γ(4)
384 = F[P(P(√4))!!] + P(4)
385 = F[P(P(√4))!!] + 4!!
386 = F[P(P(√4))!!] + !4
387 = F[P(P(√4))!!] + T(4)
388 = F[P(P(√4))!!] + P(P(P(√4)))
389 = F[P(P(√4))!!] + φ(P(Γ(4)))
390 = F[P(P(√4))!!] + P(Γ(4))
391 = P(P(φ(P(!4)))) - T(4)
392 = P(P(φ(P(!4)))) - !4
393 = P(P(φ(P(!4)))) - 4!!
394 = P(P(φ(P(!4)))) - P(4)
395 = P(P(φ(P(!4)))) - Γ(4)
396 = P(P(φ(P(!4)))) - P(P(√4))
397 = P(P(φ(P(!4)))) - 4
398 = P(P(φ(P(!4)))) - P(√4)
399 = P(P(φ(P(!4)))) - √4
400 = P(P(φ(P(!4)))) - !√4
401 = P(P(φ(P(!4)))) * !√4

FOOTNOTES:
------------------------------
The "... * !√4" part in what follows is just is multiplication by 1, so we just want to show the red terms equal the numbers to the left...

211 = P(P([P(P(√4))]!!)) * !√4

P(P([P(P(√4))]!!)) = P(P([P(P(2))]!!)) = P(P(5!!)) = P(P(15)) = P(47) = 211

231 = T(T(Γ(4))) * !√4

T(T(Γ(4))) = T(T(6)) = T(21) = 231

253 = T(P(P(4))) * !√4

T(P(P(4))) = T(P(7)) = T(17) = 253

277 = P(P(P(P(4)))) * !√4

P(P(P(P(4)))) = P(P(P(7))) = P(P(17)) = P(59) = 277

300 = T(4!) * !√4

T(4!) = T(24) = 300

317 = P(T(P(P(P(√4)))) * !√4

P(T(P(P(P(√4))))) = P(T(P(P(P(2))))) = P(T(P(5))) = P(T(11)) = P(66) = 317

331 = P(P(P(4!!))) * !√4

P(P(P(4!!))) = P(P(P(8))) = P(P(19)) = P(67) = 331

353 = P(P(φ(T(P(P(P(√4)))))) * !√4

P(P(φ(T(P(P(P(√4)))))) = P(P(φ(T(P(P(P(2)))))) = P(P(φ(T(P(5)))) = P(P(φ(T(11))) = P(P(φ(66)) = P(P(20)) = P(71) = 353

377 = F[P(P(√4))!!] * !√4

F[P(P(√4))!!] = F[P(P(2))!!] = F[5!!] = F[15] = (15th number in the sequence 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,...) = 377

Some people would consider 377 to be the 14th term in the Fibonacci sequence,
but that's not a problem, because in that case we have:
377 = F[14] = F[√196] = F[√[φ(197)]] = F[√[φ(P(45))]] = F[√[φ(P(T(9)))]] = F[√[φ(P(T(!4)))]]


401 = P(P(φ(P(!4)))) * !√4

P(P(φ(P(!4)))) = P(P(φ(P(9)))) = P(P(φ(23))) = P(P(22)) = P(79) = 401
Kolyo
 
  1  
Reply Sun 12 Jan, 2014 10:37 pm
@Kolyo,
Z[P(4)!! * T(!4)] = Z[105 * 45] = Z[4725]
which covers 4325 to 5125 (because of the new improvements to Z[...])

<> T(n) is the nth triangular number.
<> See definition of Z[expression] on page 5 of this thread.
<> See the long post on page 6 for how the power of Z[expression] has grown.
markr
 
  1  
Reply Sun 12 Jan, 2014 10:41 pm
@Kolyo,
Nice work. Now if rap can provide the next 200...

I noticed your note about the Fibonacci function. I tried to avoid it for that very reason.
0 Replies
 
markr
 
  1  
Reply Sun 12 Jan, 2014 11:02 pm
@Kolyo,
Z[P(Γ(4)! + φ(P(P(P(√4)))))] = Z[P(720+10)] = Z[P(730)] = Z[5521]
which covers 5121 to 5921 because of the new Z[...] function described on page 6 of this thread
Kolyo
 
  1  
Reply Mon 13 Jan, 2014 08:27 pm
@markr,
Z[P(P(φ(4$) + T(!4)))] = Z[P(P(96 + 45))] = Z[P(P(141))] = Z[P(811)] = Z[6229]

which covers 5829 to 6629 because of the new Z[...] function described on page 6 of this thread
markr
 
  1  
Reply Mon 13 Jan, 2014 11:57 pm
@Kolyo,
Z[P((!4)!! - P(P(Γ(4))))] = Z[P(945 - 41)] = Z[P(904)] = Z[7027]
which covers 6627 to 7427 because of the new Z[...] function described on page 6 of this thread
Kolyo
 
  1  
Reply Tue 14 Jan, 2014 07:09 pm
@markr,
Z[T(Γ(Γ(4)) + 4)] = Z[T(Γ(6) + 4)] = Z[T(120 + 4)] = Z[T(124)] = Z[7750]

Covers 7350 to 8150 because of the new Z[...] function described on p.6
Jack of Hearts
 
  1  
Reply Tue 14 Jan, 2014 08:29 pm
@markr,
44
4 x 4 ...~
0 Replies
 
markr
 
  1  
Reply Wed 15 Jan, 2014 03:10 pm
@Kolyo,
Z[!4 * (!4)!!] = Z[9 * 945] = Z[8505]

Covers 8105 to 8905 because of the new Z[...] function described on p.6
 

Related Topics

HALLOWEEN HANGMAN - Discussion by Foxfyre
Friday Flash Game 1: Filler - Discussion by Robert Gentel
Pictogram Game - Discussion by RexRed
Male vs. Female! - Discussion by mars90000000
i started playing poker again.... - Discussion by og617m4ch1ne
What's your favorite online game? - Discussion by DrewDad
Travian - Discussion by dadpad
Play Deal or No Deal online - Discussion by Robert Gentel
Fun little time gobblers. - Discussion by DrewDad
 
Copyright © 2024 MadLab, LLC :: Terms of Service :: Privacy Policy :: Page generated in 0.07 seconds on 12/22/2024 at 10:07:39