Reply
Sun 17 Jul, 2005 10:53 am
Polynomial
Question : (g-h)(10)
NOTE:
F(x)=x^2-9
g(x)=2x
h(x)=x-3
My Work:
(g-h) +10
Simplify Multiplication on the left side: + 10g - 10h
Substitute for the letter g on the left side: + 10 *(+ 2x )- 10h
Substitute for the letter h on the left side:
+ 10 *(+ 2x )- 10 *(+ x - 3 )
Simplify Multiplication on the left side: + 20x - 10x + 30
Combine like terms on the left side: + 10x + 30
Subtract + 30 from each side: + 10x + 30 - 30 - 30
Divide each side by + 10 .
+ 10x =- 30
+ 10 + 10
+ x =- 3
Am I right?
I'm not sure
try this
F(x)=x^2-9=(x+3)(x-3)
g(x)=2x
h(x)=x-3
[g(x)-h(x)]*10=[2x-(x-3)]*10=[2x-x+3]*10=(x+3)*10
so (divide by 10)
(x+3)=g(x)-h(x)
substituting
F(x)=(x+3)(x-3)=[g(x)-h(x)](x-3)
Now you've expressed F(x) in terms of g(x) and h(x)
Rap