0
   

maths

 
 
anu98
 
Reply Fri 25 May, 2012 05:35 am
show that n^-1 is divisible by 8,if n is a odd positive integer.
  • Topic Stats
  • Top Replies
  • Link to this Topic
Type: Question • Score: 0 • Views: 1,063 • Replies: 2
No top replies

 
fresco
 
  1  
Reply Fri 25 May, 2012 06:12 am
@anu98,
You presumably mean (n^2)-1 =(n+1)(n-1).
If n is odd then n+1 and n-1 are consecutive even numbers
so the expression can be re-written 2a (2a +2) or 4(a sqd +a) where a is any positive integer.
But (a sqd +a)=a(a+1) and either a or a+1 must be even giving another factor 2.
Hence the expression is divisible by 4 x 2 = 8

0 Replies
 
fresco
 
  1  
Reply Fri 25 May, 2012 12:59 pm
@anu98,
A slightly shorter proof is that any two consecutive even numbers (n-1)(n+1) must involve the product of factors 2 and 4 since if 2 is a factor of the first number then 4 will be a factor of the second, or vice versa. Hence the product has a factor of 2 x 4 = 8
0 Replies
 
 

Related Topics

Amount of Time - Question by Randy Dandy
logical number sequence riddle - Question by feather
Calc help needed - Question by mjborowsky
HELP! The Product and Quotient Rules - Question by charsha
STRAIGHT LINES - Question by iqrasarguru
Possible Proof of the ABC Conjecture - Discussion by oralloy
Help with a simple math problem? - Question by Anonymous1234567890
How do I do this on a ti 84 calculator? - Question by Anonymous1234567890
 
  1. Forums
  2. » maths
Copyright © 2024 MadLab, LLC :: Terms of Service :: Privacy Policy :: Page generated in 0.06 seconds on 12/23/2024 at 02:47:01