@meili,
If I'm not wrong you took the problems from ''RUDIMENTS OF MATHEMATICS ''; here's a solution:-
pi/5 = 36degrees , 2pi/5=72 deg. let A= 18 degree then 5A=90=3A+2A
sin2A=sin(90-3A) , so 2 sinAcosA= cos3A=4 (cosA)^3 - 3cosA
i.e. cosA (2sinA +3 - 4 (cosA)^2 ) = 0
i.e. 2 sinA - 4 ( 1 - (sinA)^2 ) +3 =0
i.e. 4 (sinA)^2 + 2 sinA +3 =0
i.e. sinA= ( - 1 + (sqrt 5) ) /4 , by solving the quadratic in sinA , the other negative root must be rejected because sin18 can not be negative. So cos36 = c0s(2x18)=1 - 2 (sin18)^2 (after some tedious
= (2 + 2 ( sqrt5) ) / 8 but simple calculations)
=( 1 + (sqrt5) )/4
cos72 = c0s(90-18)=sin18 =( -1 + (sqrt5) )/4
So cos(pi/5) - cos(2pi/5) = c0s36 - cos 72 = ( 1+(sqrt5) - (-1) - (sqrt5) ) /4 = (1 + 1)/4 = 0.5 , similarly the other result holds. ( sqrt means square root)