Soon, though, scientists will begin combining gene editing with gene drives, so-called selfish genes that appear more frequently in offspring than normal genes, which have about a 50-50 chance of being passed on. With gene drives—so named because they drive a gene through a population—researchers just have to slip a new gene into a drive system and let nature take care of the rest. Subsequent generations of whatever species we choose to modify—frogs, weeds, mosquitoes—will have more and more individuals with that gene until, eventually, it’s everywhere.
Cas9-based gene drives could be one of the most powerful technologies ever discovered by humankind. “This is one of the most exciting confluences of different theoretical approaches in science I’ve ever seen,” says Arthur Caplan, a bioethicist at New York University. “It merges population genetics, genetic engineering, molecular genetics, into an unbelievably powerful tool.”
We’re not there yet, but we’re extraordinarily close. “Essentially, we have done all of the pieces, sometimes in the same relevant species.” says Kevin Esvelt, a postdoc at Harvard University and the wunderkind behind the new technology. “It’s just no one has put it all together.”
It’s only a matter of time, though. The field is progressing rapidly. “We could easily have laboratory tests within the next few months and then field tests not long after that,” says George Church, a professor at Harvard University and Esvelt’s advisor. “That’s if everybody thinks it’s a good idea.”
http://www.pbs.org/wgbh/nova/next/evolution/crispr-gene-drives/?utm_source=facebook&utm_medium=pbsofficial&utm_campaign=nova_next
It’s likely not everyone will think this is a good idea. “There are clearly people who will object,” Caplan says. “I think the technique will be incredibly controversial.” Which is why Esvelt, Church, and their collaborators are publishing papers now, before the different parts of the puzzle have been assembled into a working whole.
“If we’re going to talk about it at all in advance, rather than in the past tense,” Church says, “now is the time.”
“Deleterious Genes”
The first organism Esvelt wants to modify is the malaria-carrying mosquito Anopheles gambiae. While his approach is novel, the idea of controlling mosquito populations through genetic modification has actually been around since the late 1970s.