@Isuckatmath,
The Calculus free solution
l field length, h is width, A is area
A=lh
l+2h=2000 so l=2000-2h
A=lh=(2000-2h)h=2000h-2h^2
2h^2-2000h+A=0 divide by 2
h^2-1000h+(A/2)=o
This is a quadratic eqn. use [-b+/-sqrt(b^2-4ac)]/(2a)
a=1, b=-1000, c=A/2 and you get one root when sqrt(b^2-4ac)]=0
set (b^2-4ac)=0
(1000)^2-4(1)(A/2)=1,000,000-2A=0 so A=500,000
or
h^2-1000h+(A/2)=o
becomes h^2-1000h+250,000=o
and
h^2-1000h+250,000=(h-500)^2=o
so h=500m & l=1000m should maximize area
check
less 50
h'=450 l'=1100 A'=495,000 less than 500,000
more 50
h'=550 l'=900 A'=495,000 less than 500,000
so max is h=500, l=1000 A=500,000
Rap